數(shù)學(xué)常用的數(shù)學(xué)思想方法主要有:用字母表示數(shù)的思想,數(shù)形結(jié)合的思想,轉(zhuǎn)化思想 (化歸思想),分類思想,類比思想,函數(shù)的思想,方程的思想,無逼近思想等等。
1.用字母表示數(shù)的思想:這是基本的數(shù)學(xué)思想之一 .在代數(shù)第一冊(cè)第二章“代數(shù)初步知識(shí)”中,主要體現(xiàn)了這種思想。
2.數(shù)形結(jié)合:是數(shù)學(xué)中最重要的,也是最基本的思想方法之一,是解決許多數(shù)學(xué)問題的有效思想?!皵?shù)缺形時(shí)少直觀,形無數(shù)時(shí)難入微”是我國(guó)著名數(shù)學(xué)家華羅庚教授的名言,是對(duì)數(shù)形結(jié)合的作用進(jìn)行了高度的概括。
3.轉(zhuǎn)化思想:在整個(gè)初中數(shù)學(xué)中,轉(zhuǎn)化(化歸)思想一直貫穿其中。轉(zhuǎn)化思想是把一個(gè)未知(待解決)的問題化為已解決的或易于解決的問題來解決,如化繁為簡(jiǎn)、化難為易,化未知為已知,化高次為低次等,它是解決問題的一種最基本的思想,它是數(shù)學(xué)基本思想方法之一。
4.分類思想:有理數(shù)的分類、整式的分類、實(shí)數(shù)的分類、角的分類,三角形的分類、四邊形的分類、點(diǎn)與圓的位置關(guān)系、直線與圓的位置關(guān)系,圓與圓的位置關(guān)系等都是通過分類討論的。
5.類比:類比推理在人們認(rèn)識(shí)和改造客觀世界的活動(dòng)中具有重要意義.它能觸類旁通,啟發(fā)思考,不僅是解決日常生活中大量問題的基礎(chǔ),而且是進(jìn)行科學(xué)研究和發(fā)明創(chuàng)造的有力工具.
6.函數(shù)的思想 :辯證唯物主義認(rèn)為,世界上一切事物都是處在運(yùn)動(dòng)、變化和發(fā)展的過程中,這就要求我們教學(xué)中重視函數(shù)的思想方法的教學(xué)。
7.方程:是初中代數(shù)的主要內(nèi)容.初中階段主要學(xué)習(xí)了幾類方程和方程組的解法,在初中階段就要形成方程的思想.所謂方程的思想,就是突出研究已知量與未知量之間的等量關(guān)系,通過設(shè)未知數(shù)、列方程或方程組,解方程或方程組等步驟,達(dá)到求值目的的解題思路和策略,
擴(kuò)展資料:
函數(shù)思想,是指用函數(shù)的概念和性質(zhì)去分析問題、轉(zhuǎn)化問題和解決問題。方程思想,是從問題的數(shù)量關(guān)系入手,運(yùn)用數(shù)學(xué)語言將問題中的條件轉(zhuǎn)化為數(shù)學(xué)模型(方程、不等式、或方程與不等式的混合組),然后通過解方程(組)或不等式(組)來使問題獲解。
從問題的整體性質(zhì)出發(fā),突出對(duì)問題的整體結(jié)構(gòu)的分析和改造,發(fā)現(xiàn)問題的整體結(jié)構(gòu)特征,善于用“集成”的眼光,把某些式子或圖形看成一個(gè)整體,把握它們之間的關(guān)聯(lián),進(jìn)行有目的的、有意識(shí)的整體處理。整體思想方法在代數(shù)式的化簡(jiǎn)與求值、解方程(組)、幾何解證等方面都有廣泛的應(yīng)用。
參考資料:百度百科-數(shù)學(xué)思想
小學(xué)數(shù)學(xué)思想方法有1、對(duì)應(yīng)思想方法 對(duì)應(yīng)是人們對(duì)兩個(gè)集合因素之間的聯(lián)系的一種思想方法,小學(xué)數(shù)學(xué)一般是一一對(duì)應(yīng)的直觀圖表,并以此孕伏函數(shù)思想。
如直線上的點(diǎn)(數(shù)軸)與表示具體的數(shù)是一一對(duì)應(yīng)。2、假設(shè)思想方法 假設(shè)是先對(duì)題目中的已知條件或問題作出某種假設(shè),然后按照題中的已知條件進(jìn)行推算,根據(jù)數(shù)量出現(xiàn)的矛盾,加以適當(dāng)調(diào)整,最后找到正確答案的一種思想方法。
假設(shè)思想是一種有意義的想象思維,掌握之后可以使要解決的問題更形象、具體,從而豐富解題思路。3、比較思想方法 比較思想是數(shù)學(xué)中常見的思想方法之一,也是促進(jìn)學(xué)生思維發(fā)展的手段。
在教學(xué)分?jǐn)?shù)應(yīng)用題中,教師善于引導(dǎo)學(xué)生比較題中已知和未知數(shù)量變化前后的情況,可以幫助學(xué)生較快地找到解題途徑。4、符號(hào)化思想方法 用符號(hào)化的語言(包括字母、數(shù)字、圖形和各種特定的符號(hào))來描述數(shù)學(xué)內(nèi)容,這就是符號(hào)思想。
如數(shù)學(xué)中各種數(shù)量關(guān)系,量的變化及量與量之間進(jìn)行推導(dǎo)和演算,都是用小小的字母表示數(shù),以符號(hào)的濃縮形式表達(dá)大量的信息。如定律、公式、等。
5、類比思想方法 類比思想是指依據(jù)兩類數(shù)學(xué)對(duì)象的相似性,有可能將已知的一類數(shù)學(xué)對(duì)象的性質(zhì)遷移到另一類數(shù)學(xué)對(duì)象上去的思想。如加法交換律和乘法交換律、長(zhǎng)方形的面積公式、平行四邊形面積公式和三角形面積公式。
類比思想不僅使數(shù)學(xué)知識(shí)容易理解,而且使公式的記憶變得順?biāo)浦鄣淖匀缓秃?jiǎn)潔。6、轉(zhuǎn)化思想方法 轉(zhuǎn)化思想是由一種形式變換成另一種形式的思想方法,而其本身的大小是不變的。
如幾何的等積變換、解方程的同解變換、公式的變形等,在計(jì)算中也常用到甲÷乙=甲*1/乙。7、分類思想方法 分類思想方法不是數(shù)學(xué)獨(dú)有的方法,數(shù)學(xué)的分類思想方法體現(xiàn)對(duì)數(shù)學(xué)對(duì)象的分類及其分類的標(biāo)準(zhǔn)。
如自然數(shù)的分類,若按能否被2整除分奇數(shù)和偶數(shù);按約數(shù)的個(gè)數(shù)分質(zhì)數(shù)和合數(shù)。又如三角形可以按邊分,也可以按角分。
不同的分類標(biāo)準(zhǔn)就會(huì)有不同的分類結(jié)果,從而產(chǎn)生新的概念。對(duì)數(shù)學(xué)對(duì)象的正確、合理分類取決于分類標(biāo)準(zhǔn)的正確、合理性,數(shù)學(xué)知識(shí)的分類有助于學(xué)生對(duì)知識(shí)的梳理和建構(gòu)。
8、集合思想方法 集合思想就是運(yùn)用集合的概念、邏輯語言、運(yùn)算、圖形等來解決數(shù)學(xué)問題或非純數(shù)學(xué)問題的思想方法。小學(xué)采用直觀手段,利用圖形和實(shí)物滲透集合思想。
在講述公約數(shù)和公倍數(shù)時(shí)采用了交集的思想方法。9、數(shù)形結(jié)合思想方法 數(shù)和形是數(shù)學(xué)研究的兩個(gè)主要對(duì)象,數(shù)離不開形,形離不開數(shù),一方面抽象的數(shù)學(xué)概念,復(fù)雜的數(shù)量關(guān)系,借助圖形使之直觀化、形象化、簡(jiǎn)單化。
另一方面復(fù)雜的形體可以用簡(jiǎn)單的數(shù)量關(guān)系表示。在解應(yīng)用題中常常借助線段圖的直觀幫助分析數(shù)量關(guān)系。
10、統(tǒng)計(jì)思想方法:小學(xué)數(shù)學(xué)中的統(tǒng)計(jì)圖表是一些基本的統(tǒng)計(jì)方法,求平均數(shù)應(yīng)用題是體現(xiàn)出數(shù)據(jù)處理的思想方法。11、極限思想方法:事物是從量變到質(zhì)變的,極限方法的實(shí)質(zhì)正是通過量變的無限過程達(dá)到質(zhì)變。
在講“圓的面積和周長(zhǎng)”時(shí),“化圓為方”“化曲為直”的極限分割思路,在觀察有限分割的基礎(chǔ)上想象它們的極限狀態(tài),這樣不僅使學(xué)生掌握公式還能從曲與直的矛盾轉(zhuǎn)化中萌發(fā)了無限逼近的極限思想。12、代換思想方法:他是方程解法的重要原理,解題時(shí)可將某個(gè)條件用別的條件進(jìn)行代換。
如學(xué)校買了4張桌子和9把椅子,共用去504元,一張桌子和3把椅子的價(jià)錢正好相等,桌子和椅子的單價(jià)各是多少?13、可逆思想方法:它是邏輯思維中的基本思想,當(dāng)順向思維難于解答時(shí),可以從條件或問題思維尋求解題思路的方法,有時(shí)可以借線段圖逆推。如一輛汽車從甲地開往乙地,第一小時(shí)行了全程的1/7,第二小時(shí)比第一小時(shí)多行了16千米,還有94千米,求甲乙之距。
14、化歸思維方法:把有可能解決的或未解決的問題,通過轉(zhuǎn)化過程,歸結(jié)為一類以便解決可較易解決的問題,以求得解決,這就是“化歸”。而數(shù)學(xué)知識(shí)聯(lián)系緊密,新知識(shí)往往是舊知識(shí)的引申和擴(kuò)展。
讓學(xué)生面對(duì)新知會(huì)用化歸思想方法去思考問題,對(duì)獨(dú)立獲得新知能力的提高無疑是有很大幫助。15、變中抓不變的思想方法:在紛繁復(fù)雜的變化中如何把握數(shù)量關(guān)系,抓不變的量為突破口,往往問了就迎刃而解。
如:科技書和文藝書共630本,其中科技書20%,后來又買來一些科技書,這時(shí)科技書占30%,又買來科技書多少本?16、數(shù)學(xué)模型思想方法:所謂數(shù)學(xué)模型思想是指對(duì)于現(xiàn)實(shí)世界的某一特定對(duì)象,從它特定的生活原型出發(fā),充分運(yùn)用觀察、實(shí)驗(yàn)、操作、比較、分析綜合概括等所謂過程,得到簡(jiǎn)化和假設(shè),它是把生活中實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題模型的一種思想方法。培養(yǎng)學(xué)生用數(shù)學(xué)的眼光認(rèn)識(shí)和處理周圍事物或數(shù)學(xué)問題乃數(shù)學(xué)的最高境界,也是學(xué)生高數(shù)學(xué)素養(yǎng)所追求的目標(biāo)。
17、整體思想方法:對(duì)數(shù)學(xué)問題的觀察和分析從宏觀和大處著手,整體把握化零為整,往往不失為一種更便捷更省時(shí)的方法。
對(duì)于那些成績(jī)較差的小學(xué)生來說,學(xué)習(xí)小學(xué)數(shù)學(xué)都有很大的難度,其實(shí)小學(xué)數(shù)學(xué)屬于基礎(chǔ)類的知識(shí)比較多,只要掌握一定的技巧還是比較容易掌握的.在小學(xué),是一個(gè)需要養(yǎng)成良好習(xí)慣的時(shí)期,注重培養(yǎng)孩子的習(xí)慣和學(xué)習(xí)能力是重要的一方面,那小學(xué)數(shù)學(xué)有哪些技巧?
一、重視課內(nèi)聽講,課后及時(shí)進(jìn)行復(fù)習(xí).
新知識(shí)的接受和數(shù)學(xué)能力的培養(yǎng)主要是在課堂上進(jìn)行的,所以我們必須特別注意課堂學(xué)習(xí)的效率,尋找正確的學(xué)習(xí)方法.在課堂上,我們必須遵循教師的思想,積極制定以下步驟,思考和預(yù)測(cè)解決問題的思想與教師之間的差異.特別是,我們必須了解基本知識(shí)和基本學(xué)習(xí)技能,并及時(shí)審查它們以避免疑慮.首先,在進(jìn)行各種練習(xí)之前,我們必須記住教師的知識(shí)點(diǎn),正確理解各種公式的推理過程,并試著記住而不是采用"不確定的書籍閱讀".勤于思考,對(duì)于一些問題試著用大腦去思考,認(rèn)真分析問題,嘗試自己解決問題.
二、多做習(xí)題,養(yǎng)成解決問題的好習(xí)慣.
如果你想學(xué)好數(shù)學(xué),你需要提出更多問題,熟悉各種問題的解決問題的想法.首先,我們先從課本的題目為標(biāo)準(zhǔn),反復(fù)練習(xí)基本知識(shí),然后找一些課外活動(dòng),幫助開拓思路練習(xí),提高自己的分析和掌握解決的規(guī)律.對(duì)于一些易于查找的問題,您可以準(zhǔn)備一個(gè)用于收集的錯(cuò)題本,編寫自己的想法來解決問題,在日常養(yǎng)成解決問題的好習(xí)慣.學(xué)會(huì)讓自己高度集中精力,使大腦興奮,快速思考,進(jìn)入最佳狀態(tài)并在考試中自由使用.
三、調(diào)整心態(tài)并正確對(duì)待考試.
首先,主要的重點(diǎn)應(yīng)放在基礎(chǔ)、基本技能、基本方法,因?yàn)榇蠖鄶?shù)測(cè)試出于基本問題,較難的題目也是出自于基本.所以只有調(diào)整學(xué)習(xí)的心態(tài),盡量讓自己用一個(gè)清楚的頭腦去解決問題,就沒有太難的題目.考試前要多對(duì)習(xí)題進(jìn)行演練,開闊思路,在保證真確的前提下提高做題的速度.對(duì)于簡(jiǎn)單的基礎(chǔ)題目要拿出二十分的把握去做;難得題目要盡量去做對(duì),使自己的水平能正?;蛘叱0l(fā)揮.
由此可見小學(xué)數(shù)學(xué)的技巧就是多做練習(xí)題,掌握基本知識(shí).另外就是心態(tài),不能見考試就膽怯,調(diào)整心態(tài)很重要.所以大家可以遵循這些技巧,來提高自己的能力,使自己進(jìn)入到數(shù)學(xué)的海洋中去.
《數(shù)學(xué)思想方法》共分十三章,分為三個(gè)部分。第一章至第四章為上篇,主要介紹數(shù)學(xué)思想方法的兩個(gè)源頭、數(shù)學(xué)思想方法和幾次重要轉(zhuǎn)折、數(shù)學(xué)的真理性以及現(xiàn)代數(shù)學(xué)的發(fā)展趨勢(shì),從時(shí)間維度和宏觀上用粗線條勾畫出數(shù)學(xué)思想方法發(fā)展的概貌。其中第三章“數(shù)學(xué)的真理性”對(duì)于了解現(xiàn)代數(shù)學(xué)觀、確立現(xiàn)代數(shù)學(xué)教學(xué)觀頗有幫助。但是,考慮到教學(xué)課時(shí)較堅(jiān)以及某些地區(qū)小學(xué)教師的專業(yè)水平有限,將此為列為選學(xué)內(nèi)容。第五章至第十章為中篇,該篇分別對(duì)數(shù)學(xué)教學(xué)中常用的抽象與概括、猜想與反駁、演繹與化歸、計(jì)算與算法、應(yīng)用與模型、分類、數(shù)形結(jié)合、特殊化學(xué)數(shù)學(xué)思想方法,為在教學(xué)中加以應(yīng)用打下扎實(shí)的基礎(chǔ)。第十一至第十三章為下篇,該篇主要闡述了數(shù)學(xué)思想方法與素質(zhì)教育之關(guān)系、數(shù)學(xué)思想方法教學(xué)的主要階段及其教學(xué)原則,以及三個(gè)數(shù)學(xué)思想方法教學(xué)案例。希望這部分內(nèi)容,能對(duì)在小學(xué)數(shù)學(xué)教學(xué)中加強(qiáng)數(shù)學(xué)思想方法教學(xué)起到一定的引領(lǐng)和促進(jìn)作用。
學(xué)習(xí)指導(dǎo)部分設(shè)置了學(xué)習(xí)目標(biāo)、學(xué)習(xí)重點(diǎn)、難點(diǎn)解析、回顧與思考、閱讀資料等欄目,可幫助學(xué)員更好地理解和掌握課程內(nèi)容。閱讀資料所選材料是對(duì)相關(guān)教材內(nèi)容的補(bǔ)充和拓寬,供學(xué)有余力的學(xué)員自學(xué)。
高中數(shù)學(xué)基本數(shù)學(xué)思想1.轉(zhuǎn)化與化歸思想:是把那些待解決或難解決的問題化歸到已有知識(shí)范圍內(nèi)可解問題的一種重要的基本數(shù)學(xué)思想.這種化歸應(yīng)是等價(jià)轉(zhuǎn)化,即要求轉(zhuǎn)化過程中的前因后果應(yīng)是充分必要的,這樣才能保證轉(zhuǎn)化后所得結(jié)果仍為原題的結(jié)果. 高中數(shù)學(xué)中新知識(shí)的學(xué)習(xí)過程,就是一個(gè)在已有知識(shí)和新概念的基礎(chǔ)上進(jìn)行化歸的過程.因此,化歸思想在數(shù)學(xué)中無處不在. 化歸思想在解題教學(xué)中的的運(yùn)用可概括為:化未知為已知,化難為易,化繁為簡(jiǎn).從而達(dá)到知識(shí)遷移使問題獲得解決.但若化歸不當(dāng)也可能使問題的解決陷入困境. 例證2.邏輯劃分思想(即分類與整合思想):是當(dāng)數(shù)學(xué)對(duì)象的本質(zhì)屬性在局部上有不同點(diǎn)而又不便化歸為單一本質(zhì)屬性的問題解決時(shí),而根據(jù)其不同點(diǎn)選擇適當(dāng)?shù)膭澐謽?biāo)準(zhǔn)分類求解,并綜合得出答案的一種基本數(shù)學(xué)思想.但要注意按劃分標(biāo)準(zhǔn)所分各類間應(yīng)滿足互相排斥,不重復(fù),不遺漏,最簡(jiǎn)潔的要求. 在解題教學(xué)中常用的劃分標(biāo)準(zhǔn)有:按定義劃分;按公式或定理的適用范圍劃分;按運(yùn)算法則的適用條件范圍劃分;按函數(shù)性質(zhì)劃分;按圖形的位置和形狀的變化劃分;按結(jié)論可能出現(xiàn)的不同情況劃分等.需說明的是: 有些問題既可用分類思想求解又可運(yùn)用化歸思想或數(shù)形結(jié)合思想等將其轉(zhuǎn)化到一個(gè)新的知識(shí)環(huán)境中去考慮,而避免分類求解.運(yùn)用分類思想的關(guān)鍵是尋找引起分類的原因和找準(zhǔn)劃分標(biāo)準(zhǔn). 例證3. 函數(shù)與方程思想(即聯(lián)系思想或運(yùn)動(dòng)變化的思想):就是用運(yùn)動(dòng)和變化的觀點(diǎn)去分析研究具體問題中的數(shù)量關(guān)系,抽象其數(shù)量特征,建立函數(shù)關(guān)系式,利用函數(shù)或方程有關(guān)知識(shí)解決問題的一種重要的基本數(shù)學(xué)思想.4. 數(shù)形結(jié)合思想:將數(shù)學(xué)問題中抽象的數(shù)量關(guān)系表現(xiàn)為一定的幾何圖形的性質(zhì)(或位置關(guān)系);或者把幾何圖形的性質(zhì)(或位置關(guān)系)抽象為適當(dāng)?shù)臄?shù)量關(guān)系,使抽象思維與形象思維結(jié)合起來,實(shí)現(xiàn)抽象的數(shù)量關(guān)系與直觀的具體形象的聯(lián)系和轉(zhuǎn)化,從而使隱蔽的條件明朗化,是化難為易,探索解題思維途徑的重要的基本數(shù)學(xué)思想.5. 整體思想:處理數(shù)學(xué)問題的著眼點(diǎn)或在整體或在局部.它是從整體角度出發(fā),分析條件與目標(biāo)之間的結(jié)構(gòu)關(guān)系,對(duì)應(yīng)關(guān)系,相互聯(lián)系及變化規(guī)律,從而找出最優(yōu)解題途徑的重要的數(shù)學(xué)思想.它是控制論,信息論,系統(tǒng)論中“整體—部分—整體”原則在數(shù)學(xué)中的體現(xiàn).在解題中,為了便于掌握和運(yùn)用整體思想,可將這一思想概括為:記住已知(用過哪些條件?還有哪些條件未用上?如何創(chuàng)造機(jī)會(huì)把未用上的條件用上?),想著目標(biāo)(向著目標(biāo)步步推理,必要時(shí)可利用圖形標(biāo)示出已知和求證);看聯(lián)系,抓變化,或化歸;或數(shù)形轉(zhuǎn)換,尋求解答.一般來說,整體范圍看得越大,解法可能越好.在整體思想指導(dǎo)下,解題技巧只需記住已知,想著目標(biāo), 步步正確推理就夠了.中學(xué)數(shù)學(xué)中還有一些數(shù)學(xué)思想,如:集合的思想; 補(bǔ)集思想; 歸納與遞推思想; 對(duì)稱思想; 逆反思想; 類比思想; 參變數(shù)思想 有限與無限的思想;特殊與一般的思想.它們大多是本文所述基本數(shù)學(xué)思想在一定知識(shí)環(huán)境中的具體體現(xiàn).所以在中學(xué)數(shù)學(xué)中,只要掌握數(shù)學(xué)基礎(chǔ)知識(shí),把握代數(shù),三角,立體幾何,解析幾何的每部分的知識(shí)點(diǎn)及聯(lián)系,掌握幾個(gè)常用的基本數(shù)學(xué)思想和將它們統(tǒng)一起來的整體思想,就定能找到解題途徑.提高數(shù)學(xué)解題能力.數(shù)學(xué)解題中轉(zhuǎn)化與化歸思想的應(yīng)用 數(shù)學(xué)活動(dòng)的實(shí)質(zhì)就是思維的轉(zhuǎn)化過程,在解題中,要不斷改變解題方向,從不同角度,不同的側(cè)面去探討問題的解法,尋求最佳方法,在轉(zhuǎn)化過程中,應(yīng)遵循三個(gè)原則:1、熟悉化原則,即將陌生的問題轉(zhuǎn)化為熟悉的問題;2、簡(jiǎn)單化原則,即將復(fù)雜問題轉(zhuǎn)化為簡(jiǎn)單問題;3、直觀化原則,即將抽象總是具體化.策略一:正向向逆向轉(zhuǎn)化 一個(gè)命題的題設(shè)和結(jié)論是因果關(guān)系的辨證統(tǒng)一,解題時(shí),如果從下面入手思維受阻,不妨從它的正面出發(fā),逆向思維,往往會(huì)另有捷徑.例1 :四面體的頂點(diǎn)和各棱中點(diǎn)共10個(gè)點(diǎn),在其中取4個(gè)不共面的點(diǎn),不共面的取法共有__________種.A、150 B、147 C、144 D、141 分析:本題正面入手,情況復(fù)雜,若從反面去考慮,先求四點(diǎn)共面的取法總數(shù)再用補(bǔ)集思想,就簡(jiǎn)單多了.10個(gè)點(diǎn)中任取4個(gè)點(diǎn)取法有 種,其中面ABC內(nèi)的6個(gè)點(diǎn)中任取4點(diǎn)都共面有 種,同理其余3個(gè)面內(nèi)也有 種,又,每條棱與相對(duì)棱中點(diǎn)共面也有6種,各棱中點(diǎn)4點(diǎn)共面的有3種, 不共面取法有 種,應(yīng)選(D).策略二:局部向整體的轉(zhuǎn)化 從局部入手,按部就班地分析問題,是常用思維方法,但對(duì)較復(fù)雜的數(shù)學(xué)問題卻需要從總體上去把握事物,不糾纏細(xì)節(jié),從系統(tǒng)中去分析問題,不單打獨(dú)斗.例2:一個(gè)四面體所有棱長(zhǎng)都是 ,四個(gè)頂點(diǎn)在同一球面上,則此球表面積為( ) A、B、C、D、分析:若利用正四面體外接球的性質(zhì),構(gòu)造直角三角形去求解,過程冗長(zhǎng),容易出。
1、數(shù)學(xué)思維方法有哪些一、轉(zhuǎn)化方法:轉(zhuǎn)化思維,既是一種方法,也是一種思維。
轉(zhuǎn)化思維,是指在解決問題的過程中遇到障礙時(shí),通過改變問題的方向,從不同的角度,把問題由一種形式轉(zhuǎn)換成另一種形式,尋求最佳方法,使問題變得更簡(jiǎn)單、更清晰。二、邏輯方法:邏輯是一切思考的基礎(chǔ)。
羅輯思維,是人們?cè)谡J(rèn)識(shí)過程中借助于概念、判斷、推理等思維形式對(duì)事物進(jìn)行觀察、比較、分析、綜合、抽象、概括、判斷、推理的思維過程。羅輯思維,在解決邏輯推理問題時(shí)使用廣泛。
三、逆向方法:逆向思維也叫求異思維,它是對(duì)司空見慣的似乎已成定論的事物或觀點(diǎn)反過來思考的一種思維方式。敢于“反其道而思之”,讓思維向?qū)α⒚娴姆较虬l(fā)展,從問題的相反面深入地進(jìn)行探索,樹立新思想,創(chuàng)立新形象。
四、對(duì)應(yīng)方法:對(duì)應(yīng)思維是在數(shù)量關(guān)系之間(包括量差、量倍、量率)建立一種直接聯(lián)系的思維方法。比較常見的是一般對(duì)應(yīng)(如兩個(gè)量或多個(gè)量的和差倍之間的對(duì)應(yīng)關(guān)系)和量率對(duì)應(yīng)。
五、創(chuàng)新方法:創(chuàng)新思維是指以新穎獨(dú)創(chuàng)的方法解決問題的思維過程,通過這種思維能突破常規(guī)思維的界限,以超常規(guī)甚至反常規(guī)的方法、視角去思考問題,提得出與眾不同的解決方案??煞譃椴町愋浴⑻剿魇?、優(yōu)化式及否定性四種。
六、系統(tǒng)方法:系統(tǒng)思維也叫整體思維,系統(tǒng)思維法是指在解題時(shí)對(duì)具體題目所涉及到的知識(shí)點(diǎn)有一個(gè)系統(tǒng)的認(rèn)識(shí),即拿到題目先分析、判斷屬于什么知識(shí)點(diǎn),然后回憶這類問題分為哪幾種類型,以及對(duì)應(yīng)的解決方法。七、類比方法:類比思維是指根據(jù)事物之間某些相似性質(zhì),將陌生的、不熟悉的問題與熟悉問題或其他事物進(jìn)行比較,發(fā)現(xiàn)知識(shí)的共性,找到其本質(zhì),從而解決問題的思維方法。
八、形象方法:形象思維,主要是指人們?cè)谡J(rèn)識(shí)世界的過程中,對(duì)事物表象進(jìn)行取舍時(shí)形成的,是指用直觀形象的表象,解決問題的思維方法。想象是形象思維的高級(jí)形式也是其一種基本方法。
如何鍛煉自己的數(shù)學(xué)思維?一、做出來不如講出來,聽得懂不如說得通。做10道題,不如講一道題。
孩子做完家庭作業(yè)后,家長(zhǎng)不妨鼓勵(lì)孩子開口講解一下數(shù)學(xué)作業(yè)中的難題,我也在群里會(huì)經(jīng)常發(fā)一些比較好的訓(xùn)練題,您也可以鼓勵(lì)去想一想說一說,如果講得好,家長(zhǎng)還可進(jìn)行小獎(jiǎng)勵(lì),讓孩子更有成就感。二、舉一反三,學(xué)會(huì)變通。
舉一反三出自孔子的《論語·述而》:“舉一隅,不以三隅反,則不復(fù)也?!币馑际钦f:我舉出一個(gè)墻角,你們應(yīng)該要能靈活的推想到另外三個(gè)墻角,如果不能的話,我也不會(huì)再教你們了。
后來,大家就把孔子說的這段話變成了“舉一反三”這句成語,意思是說,學(xué)一件東西,可以靈活的思考,運(yùn)用到其他相類似的東西上!在數(shù)學(xué)的訓(xùn)練中,一定要給孩子舉一反三訓(xùn)練。一道題看似理解了,但他的思維可能比較直線,不多做幾道舉一反三或在此基礎(chǔ)上變式的題,他還是轉(zhuǎn)不過玩了。
舉一反三其實(shí)就是“師傅領(lǐng)進(jìn)門,學(xué)藝在自身”這句話的執(zhí)行行為。三、建立錯(cuò)題本,培養(yǎng)正確的思維習(xí)慣每上第一次課,我所講的課程內(nèi)容都和學(xué)生的錯(cuò)題有關(guān)。
我通常把試卷中的錯(cuò)題摘抄出幾個(gè)典型題,作為課堂的例題再講一遍。而學(xué)生的反應(yīng),或是像沒有見過,或是對(duì)題目非常熟悉,但沒有思路。
這些現(xiàn)象的發(fā)生,都是學(xué)生沒有及時(shí)總結(jié)的原因。所以第一次課后我都建議我的學(xué)生做一個(gè)錯(cuò)題本,像寫日記一樣,記錄下自己的錯(cuò)題和錯(cuò)因分析。
一般來說,錯(cuò)題分為三種類型:第一種是特別愚蠢的錯(cuò)誤、特別簡(jiǎn)單的錯(cuò)誤;第二種就是拿到題目時(shí)一點(diǎn)思路都沒有,不知道解題該從何下手,但是一看到答案卻恍然大悟;第三種就是題目難度中等,按道理有能力做對(duì),但是卻做錯(cuò)了。尤其第二種、第三種,必須放到錯(cuò)題本上。
建立錯(cuò)題本的好處就是掌握了自己所犯錯(cuò)的類型,為防范一類錯(cuò)誤成為習(xí)慣性的思維。四、圖形推理是培養(yǎng)邏輯思維能力最好的工具假是真時(shí)真亦假,真是假時(shí)假亦真;邏輯思維是在規(guī)則的確定下而進(jìn)行的思維,如果聯(lián)系生活就屬于非常規(guī)思維。
一切看似與生活毫無聯(lián)系卻自在法則約束規(guī)范的范圍內(nèi)。邏輯推理的“瞞天過海”可謂五花八門,好似一個(gè)萬花筒,百變無窮,樂趣無窮。
幾何圖形是助其鍛煉邏輯思維的好工具,經(jīng)典的圖形推理題總有其構(gòu)思、思路、巧妙的思維;經(jīng)典在于其看似變態(tài),而實(shí)際解法卻簡(jiǎn)而又簡(jiǎn)單。因此,多訓(xùn)練一些圖形推理題,對(duì)其邏輯思維很有幫助。
高中數(shù)學(xué)基本數(shù)學(xué)思想1.轉(zhuǎn)化與化歸思想:是把那些待解決或難解決的問題化歸到已有知識(shí)范圍內(nèi)可解問題的一種重要的基本數(shù)學(xué)思想.這種化歸應(yīng)是等價(jià)轉(zhuǎn)化,即要求轉(zhuǎn)化過程中的前因后果應(yīng)是充分必要的,這樣才能保證轉(zhuǎn)化后所得結(jié)果仍為原題的結(jié)果. 高中數(shù)學(xué)中新知識(shí)的學(xué)習(xí)過程,就是一個(gè)在已有知識(shí)和新概念的基礎(chǔ)上進(jìn)行化歸的過程.因此,化歸思想在數(shù)學(xué)中無處不在. 化歸思想在解題教學(xué)中的的運(yùn)用可概括為:化未知為已知,化難為易,化繁為簡(jiǎn).從而達(dá)到知識(shí)遷移使問題獲得解決.但若化歸不當(dāng)也可能使問題的解決陷入困境. 例證2.邏輯劃分思想(即分類與整合思想):是當(dāng)數(shù)學(xué)對(duì)象的本質(zhì)屬性在局部上有不同點(diǎn)而又不便化歸為單一本質(zhì)屬性的問題解決時(shí),而根據(jù)其不同點(diǎn)選擇適當(dāng)?shù)膭澐謽?biāo)準(zhǔn)分類求解,并綜合得出答案的一種基本數(shù)學(xué)思想.但要注意按劃分標(biāo)準(zhǔn)所分各類間應(yīng)滿足互相排斥,不重復(fù),不遺漏,最簡(jiǎn)潔的要求. 在解題教學(xué)中常用的劃分標(biāo)準(zhǔn)有:按定義劃分;按公式或定理的適用范圍劃分;按運(yùn)算法則的適用條件范圍劃分;按函數(shù)性質(zhì)劃分;按圖形的位置和形狀的變化劃分;按結(jié)論可能出現(xiàn)的不同情況劃分等.需說明的是: 有些問題既可用分類思想求解又可運(yùn)用化歸思想或數(shù)形結(jié)合思想等將其轉(zhuǎn)化到一個(gè)新的知識(shí)環(huán)境中去考慮,而避免分類求解.運(yùn)用分類思想的關(guān)鍵是尋找引起分類的原因和找準(zhǔn)劃分標(biāo)準(zhǔn). 例證3. 函數(shù)與方程思想(即聯(lián)系思想或運(yùn)動(dòng)變化的思想):就是用運(yùn)動(dòng)和變化的觀點(diǎn)去分析研究具體問題中的數(shù)量關(guān)系,抽象其數(shù)量特征,建立函數(shù)關(guān)系式,利用函數(shù)或方程有關(guān)知識(shí)解決問題的一種重要的基本數(shù)學(xué)思想.4. 數(shù)形結(jié)合思想:將數(shù)學(xué)問題中抽象的數(shù)量關(guān)系表現(xiàn)為一定的幾何圖形的性質(zhì)(或位置關(guān)系);或者把幾何圖形的性質(zhì)(或位置關(guān)系)抽象為適當(dāng)?shù)臄?shù)量關(guān)系,使抽象思維與形象思維結(jié)合起來,實(shí)現(xiàn)抽象的數(shù)量關(guān)系與直觀的具體形象的聯(lián)系和轉(zhuǎn)化,從而使隱蔽的條件明朗化,是化難為易,探索解題思維途徑的重要的基本數(shù)學(xué)思想.5. 整體思想:處理數(shù)學(xué)問題的著眼點(diǎn)或在整體或在局部.它是從整體角度出發(fā),分析條件與目標(biāo)之間的結(jié)構(gòu)關(guān)系,對(duì)應(yīng)關(guān)系,相互聯(lián)系及變化規(guī)律,從而找出最優(yōu)解題途徑的重要的數(shù)學(xué)思想.它是控制論,信息論,系統(tǒng)論中“整體—部分—整體”原則在數(shù)學(xué)中的體現(xiàn).在解題中,為了便于掌握和運(yùn)用整體思想,可將這一思想概括為:記住已知(用過哪些條件?還有哪些條件未用上?如何創(chuàng)造機(jī)會(huì)把未用上的條件用上?),想著目標(biāo)(向著目標(biāo)步步推理,必要時(shí)可利用圖形標(biāo)示出已知和求證);看聯(lián)系,抓變化,或化歸;或數(shù)形轉(zhuǎn)換,尋求解答.一般來說,整體范圍看得越大,解法可能越好.在整體思想指導(dǎo)下,解題技巧只需記住已知,想著目標(biāo), 步步正確推理就夠了.中學(xué)數(shù)學(xué)中還有一些數(shù)學(xué)思想,如:集合的思想;補(bǔ)集思想;歸納與遞推思想;對(duì)稱思想;逆反思想;類比思想;參變數(shù)思想有限與無限的思想;特殊與一般的思想.它們大多是本文所述基本數(shù)學(xué)思想在一定知識(shí)環(huán)境中的具體體現(xiàn).所以在中學(xué)數(shù)學(xué)中,只要掌握數(shù)學(xué)基礎(chǔ)知識(shí),把握代數(shù),三角,立體幾何,解析幾何的每部分的知識(shí)點(diǎn)及聯(lián)系,掌握幾個(gè)常用的基本數(shù)學(xué)思想和將它們統(tǒng)一起來的整體思想,就定能找到解題途徑.提高數(shù)學(xué)解題能力.數(shù)學(xué)解題中轉(zhuǎn)化與化歸思想的應(yīng)用數(shù)學(xué)活動(dòng)的實(shí)質(zhì)就是思維的轉(zhuǎn)化過程,在解題中,要不斷改變解題方向,從不同角度,不同的側(cè)面去探討問題的解法,尋求最佳方法,在轉(zhuǎn)化過程中,應(yīng)遵循三個(gè)原則:1、熟悉化原則,即將陌生的問題轉(zhuǎn)化為熟悉的問題;2、簡(jiǎn)單化原則,即將復(fù)雜問題轉(zhuǎn)化為簡(jiǎn)單問題;3、直觀化原則,即將抽象總是具體化.策略一:正向向逆向轉(zhuǎn)化一個(gè)命題的題設(shè)和結(jié)論是因果關(guān)系的辨證統(tǒng)一,解題時(shí),如果從下面入手思維受阻,不妨從它的正面出發(fā),逆向思維,往往會(huì)另有捷徑.例1 :四面體的頂點(diǎn)和各棱中點(diǎn)共10個(gè)點(diǎn),在其中取4個(gè)不共面的點(diǎn),不共面的取法共有__________種.A、150 B、147 C、144 D、141分析:本題正面入手,情況復(fù)雜,若從反面去考慮,先求四點(diǎn)共面的取法總數(shù)再用補(bǔ)集思想,就簡(jiǎn)單多了.10個(gè)點(diǎn)中任取4個(gè)點(diǎn)取法有 種,其中面ABC內(nèi)的6個(gè)點(diǎn)中任取4點(diǎn)都共面有 種,同理其余3個(gè)面內(nèi)也有 種,又,每條棱與相對(duì)棱中點(diǎn)共面也有6種,各棱中點(diǎn)4點(diǎn)共面的有3種, 不共面取法有 種,應(yīng)選(D).策略二:局部向整體的轉(zhuǎn)化從局部入手,按部就班地分析問題,是常用思維方法,但對(duì)較復(fù)雜的數(shù)學(xué)問題卻需要從總體上去把握事物,不糾纏細(xì)節(jié),從系統(tǒng)中去分析問題,不單打獨(dú)斗.例2:一個(gè)四面體所有棱長(zhǎng)都是 ,四個(gè)頂點(diǎn)在同一球面上,則此球表面積為( )A、B、C、D、分析:若利用正四面體外接球的性質(zhì),構(gòu)造直角三角形去求解,過程冗長(zhǎng),容易出。
聲明:本網(wǎng)站尊重并保護(hù)知識(shí)產(chǎn)權(quán),根據(jù)《信息網(wǎng)絡(luò)傳播權(quán)保護(hù)條例》,如果我們轉(zhuǎn)載的作品侵犯了您的權(quán)利,請(qǐng)?jiān)谝粋€(gè)月內(nèi)通知我們,我們會(huì)及時(shí)刪除。
蜀ICP備2020033479號(hào)-4 Copyright ? 2016 學(xué)習(xí)鳥. 頁(yè)面生成時(shí)間:2.644秒