初一數(shù)學(上)的知識點 有理數(shù) 1.有理數(shù): (1)凡能寫成 形式的數(shù),都是有理數(shù).正整數(shù)、0、負整數(shù)統(tǒng)稱整數(shù);正分數(shù)、負分數(shù)統(tǒng)稱分數(shù);整數(shù)和分數(shù)統(tǒng)稱有理數(shù).注意:0即不是正數(shù),也不是負數(shù);-a不一定是負數(shù),+a也不一定是正數(shù);p不是有理數(shù); (2)有理數(shù)的分類: ① ② (3)注意:有理數(shù)中,1、0、-1是三個特殊的數(shù),它們有自己的特性;這三個數(shù)把數(shù)軸上的數(shù)分成四個區(qū)域,這四個區(qū)域的數(shù)也有自己的特性; (4)自然數(shù)?:0和正整數(shù);a>0 , a是正數(shù);aa≥0 , a是正數(shù)或0 , a是非負數(shù);a≤ 0 , a是負數(shù)或0 , a是非正數(shù). 2.數(shù)軸:數(shù)軸是規(guī)定了原點、正方向、單位長度的一條直線. 3.相反數(shù): (1)只有符號不同的兩個數(shù),我們說其中一個是另一個的相反數(shù);0的相反數(shù)還是0; (2)注意: a-b+c的相反數(shù)是-a+b-c;a-b的相反數(shù)是b-a;a+b的相反數(shù)是-a-b; (3)相反數(shù)的和為0 , a+b=0 , a、b互為相反數(shù). 4.絕對值: (1)正數(shù)的絕對值是其本身,0的絕對值是0,負數(shù)的絕對值是它的相反數(shù);注意:絕對值的意義是數(shù)軸上表示某數(shù)的點離開原點的距離; (2) 絕對值可表示為: 或 ;絕對值的問題經(jīng)常分類討論; (3) |a|是重要的非負數(shù),即|a|≥0;注意:|a|·|b|=|a·b|, . 5.有理數(shù)比大?。海?)正數(shù)的絕對值越大,這個數(shù)越大;(2)正數(shù)永遠比0大,負數(shù)永遠比0??;(3)正數(shù)大于一切負數(shù);(4)兩個負數(shù)比大小,絕對值大的反而??;(5)數(shù)軸上的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大;(6)大數(shù)-小數(shù) > 0,小數(shù)-大數(shù)(1)同號兩數(shù)相加,取相同的符號,并把絕對值相加; (2)異號兩數(shù)相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值; (3)一個數(shù)與0相加,仍得這個數(shù). 8.有理數(shù)加法的運算律: (1)加法的交換律:a+b=b+a ;(2)加法的結(jié)合律:(a+b)+c=a+(b+c). 9.有理數(shù)減法法則:減去一個數(shù),等于加上這個數(shù)的相反數(shù);即a-b=a+(-b). 10 有理數(shù)乘法法則: (1)兩數(shù)相乘,同號為正,異號為負,并把絕對值相乘; (2)任何數(shù)同零相乘都得零; (3)幾個數(shù)相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數(shù)決定. 11 有理數(shù)乘法的運算律: (1)乘法的交換律:ab=ba;(2)乘法的結(jié)合律:(ab)c=a(bc); (3)乘法的分配律:a(b+c)=ab+ac . 12.有理數(shù)除法法則:除以一個數(shù)等于乘以這個數(shù)的倒數(shù);注意:零不能做除數(shù), . 13.有理數(shù)乘方的法則: (1)正數(shù)的任何次冪都是正數(shù); (2)負數(shù)的奇次冪是負數(shù);負數(shù)的偶次冪是正數(shù);注意:當n為正奇數(shù)時: (-a)n=-an或(a -b)n=-(b-a)n , 當n為正偶數(shù)時: (-a)n =an 或 (a-b)n=(b-a)n . 14.乘方的定義: (1)求相同因式積的運算,叫做乘方; (2)乘方中,相同的因式叫做底數(shù),相同因式的個數(shù)叫做指數(shù),乘方的結(jié)果叫做冪; (3)a2是重要的非負數(shù),即a2≥0;若a2+|b|=0 , a=0,b=0; (4)據(jù)規(guī)律 底數(shù)的小數(shù)點移動一位,平方數(shù)的小數(shù)點移動二位. 15.科學記數(shù)法:把一個大于10的數(shù)記成a*10n的形式,其中a是整數(shù)數(shù)位只有一位的數(shù),這種記數(shù)法叫科學記數(shù)法. 16.近似數(shù)的精確位:一個近似數(shù),四舍五入到那一位,就說這個近似數(shù)的精確到那一位. 17.有效數(shù)字:從左邊第一個不為零的數(shù)字起,到精確的位數(shù)止,所有數(shù)字,都叫這個近似數(shù)的有效數(shù)字. 18.混合運算法則:先乘方,后乘除,最后加減;注意:怎樣算簡單,怎樣算準確,是數(shù)學計算的最重要的原則. 19.特殊值法:是用符合題目要求的數(shù)代入,并驗證題設(shè)成立而進行猜想的一種方法,但不能用于證明. 整式的加減 1.單項式:在代數(shù)式中,若只含有乘法(包括乘方)運算。
或雖含有除法運算,但除式中不含字母的一類代數(shù)式叫單項式. 2.單項式的系數(shù)與次數(shù):單項式中不為零的數(shù)字因數(shù),叫單項式的數(shù)字系數(shù),簡稱單項式的系數(shù);系數(shù)不為零時,單項式中所有字母指數(shù)的和,叫單項式的次數(shù). 3.多項式:幾個單項式的和叫多項式. 4.多項式的項數(shù)與次數(shù):多項式中所含單項式的個數(shù)就是多項式的項數(shù),每個單項式叫多項式的項;多項式里,次數(shù)最高項的次數(shù)叫多項式的次數(shù);注意:(若a、b、c、p、q是常數(shù))ax2+bx+c和x2+px+q是常見的兩個二次三項式. 5.整式:凡不含有除法運算,或雖含有除法運算但除式中不含字母的代數(shù)式叫整式. 整式分類為: . 6.同類項:所含字母相同,并且相同字母的指數(shù)也相同的單項式是同類項. 7.合并同類項法則:系數(shù)相加,字母與字母的指數(shù)不變. 8.去(添)括號法則:去(添)括號時,若括號前邊是“+”號,括號里的各項都不變號;若括號前邊是“-”號,括號里的各項都要變號. 9.整式的加減:整式的加減,實際上是在去括號的基礎(chǔ)上,把多項式的同類項合并. 10.多項式的升冪和降冪排列:把一個多項式的各項按某個字母的指數(shù)從小到大(或從大到?。┡帕衅饋?,叫做按這個字母的升冪排列(或降冪排列).注意:多項式計算的最后結(jié)果一般應(yīng)該進行升冪(或降冪)排列. 一元一次方程 1.等式與等量:用“=”號連接而成的式子叫等式.注意:“等量就能代入”! 2.等式的性質(zhì): 等式性質(zhì)1:等式兩邊都加上(或減去)同一個數(shù)或同一個整式,所得結(jié)果仍是等式; 。
代數(shù)初步知識 1. 代數(shù)式:用運算符號“+ - * ÷ ?? ”連接數(shù)及表示數(shù)的字母的式子稱為代數(shù)式.注意:用字母表示數(shù)有一定的限制,首先字母所取得數(shù)應(yīng)保證它所在的式子有意義,其次字母所取得數(shù)還應(yīng)使實際生活或生產(chǎn)有意義;單獨一個數(shù)或一個字母也是代數(shù)式. 2.列代數(shù)式的幾個注意事項: (1)數(shù)與字母相乘,或字母與字母相乘通常使用“· ” 乘,或省略不寫; (2)數(shù)與數(shù)相乘,仍應(yīng)使用“*”乘,不用“· ”乘,也不能省略乘號; (3)數(shù)與字母相乘時,一般在結(jié)果中把數(shù)寫在字母前面,如a*5應(yīng)寫成5a; (4)帶分數(shù)與字母相乘時,要把帶分數(shù)改成假分數(shù)形式,如a* 應(yīng)寫成 a; (5)在代數(shù)式中出現(xiàn)除法運算時,一般用分數(shù)線將被除式和除式聯(lián)系,如3÷a寫成 的形式; (6)a與b的差寫作a-b,要注意字母順序;若只說兩數(shù)的差,當分別設(shè)兩數(shù)為a、b時,則應(yīng)分類,寫做a-b和b-a . 3.幾個重要的代數(shù)式:(m、n表示整數(shù)) (1)a與b的平方差是: a2-b2 ; a與b差的平方是:(a-b)2 ; (2)若a、b、c是正整數(shù),則兩位整數(shù)是: 10a+b ,則三位整數(shù)是:100a+10b+c; (3)若m、n是整數(shù),則被5除商m余n的數(shù)是: 5m+n ;偶數(shù)是:2n ,奇數(shù)是:2n+1;三個連續(xù)整數(shù)是: n-1、n、n+1 ; (4)若b>0,則正數(shù)是:a2+b ,負數(shù)是: -a2-b ,非負數(shù)是: a2,非正數(shù)是:-a2. 有理數(shù) 1.有理數(shù): (1)凡能寫成 形式的數(shù),都是有理數(shù).正整數(shù)、0、負整數(shù)統(tǒng)稱整數(shù);正分數(shù)、負分數(shù)統(tǒng)稱分數(shù);整數(shù)和分數(shù)統(tǒng)稱有理數(shù).注意:0即不是正數(shù),也不是負數(shù);-a不一定是負數(shù),+a也不一定是正數(shù);p不是有理數(shù); (2)有理數(shù)的分類: ① ② (3)注意:有理數(shù)中,1、0、-1是三個特殊的數(shù),它們有自己的特性;這三個數(shù)把數(shù)軸上的數(shù)分成四個區(qū)域,這四個區(qū)域的數(shù)也有自己的特性; a≤ 0 ? a是負數(shù)或0 ? a是非正數(shù). 2.數(shù)軸:數(shù)軸是規(guī)定了原點、正方向、單位長度的一條線. 3.相反數(shù): (1)只有符號不同的兩個數(shù),我們說其中一個是另一個的相反數(shù);0的相反數(shù)還是0; (2)注意: a-b+c的相反數(shù)是-a+b-c;a-b的相反數(shù)是b-a;a+b的相反數(shù)是-a-b; (3)相反數(shù)的和為0 ? a+b=0 ? a、b互為相反數(shù). 4.絕對值: (1)正數(shù)的絕對值是其本身,0的絕對值是0,負數(shù)的絕對值是它的相反數(shù);注意:絕對值的意義是數(shù)軸上表示某數(shù)的點離開原點的距離; (2) 絕對值可表示為: 或 ;絕對值的問題經(jīng)常分類討論; (3) |a|是重要的非負數(shù),即|a|≥0;注意:|a|·|b|=|a·b|, . 5.有理數(shù)比大?。?(1)正數(shù)的絕對值越大,這個數(shù)越大; (2)正數(shù)永遠比0大,負數(shù)永遠比0??; (3)正數(shù)大于一切負數(shù); (4)兩個負數(shù)比大小,絕對值大的反而??; (5)數(shù)軸上的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大; (6)大數(shù)-小數(shù) > 0,小數(shù)-大數(shù)。
第一章 有理數(shù)1.1 正數(shù)與負數(shù)在以前學過的0以外的數(shù)前面加上負號“—”的數(shù)叫負數(shù)(negative number)。
與負數(shù)具有相反意義,即以前學過的0以外的數(shù)叫做正數(shù)(positive number)(根據(jù)需要,有時在正數(shù)前面也加上“+”)。1.2 有理數(shù)正整數(shù)、0、負整數(shù)統(tǒng)稱整數(shù)(integer),正分數(shù)和負分數(shù)統(tǒng)稱分數(shù)(fraction)。
整數(shù)和分數(shù)統(tǒng)稱有理數(shù)(rational number)。通常用一條直線上的點表示數(shù),這條直線叫數(shù)軸(number axis)。
數(shù)軸三要素:原點、正方向、單位長度。在直線上任取一個點表示數(shù)0,這個點叫做原點(origin)。
只有符號不同的兩個數(shù)叫做互為相反數(shù)(opposite number)。(例:2的相反數(shù)是-2;0的相反數(shù)是0)數(shù)軸上表示數(shù)a的點與原點的距離叫做數(shù)a的絕對值(absolute value),記作|a|。
一個正數(shù)的絕對值是它本身;一個負數(shù)的絕對值是它的相反數(shù);0的絕對值是0。兩個負數(shù),絕對值大的反而小。
1.3 有理數(shù)的加減法有理數(shù)加法法則:1.同號兩數(shù)相加,取相同的符號,并把絕對值相加。2.絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值。
互為相反數(shù)的兩個數(shù)相加得0。3.一個數(shù)同0相加,仍得這個數(shù)。
有理數(shù)減法法則:減去一個數(shù),等于加這個數(shù)的相反數(shù)。1.4 有理數(shù)的乘除法有理數(shù)乘法法則:兩數(shù)相乘,同號得正,異號得負,并把絕對值相乘。
任何數(shù)同0相乘,都得0。乘積是1的兩個數(shù)互為倒數(shù)。
有理數(shù)除法法則:除以一個不等于0的數(shù),等于乘這個數(shù)的倒數(shù)。兩數(shù)相除,同號得正,異號得負,并把絕對值相除。
0除以任何一個不等于0的數(shù),都得0。 mì求n個相同因數(shù)的積的運算,叫乘方,乘方的結(jié)果叫冪(power)。
在a的n次方中,a叫做底數(shù)(base number),n叫做指數(shù)(exponent)。負數(shù)的奇次冪是負數(shù),負數(shù)的偶次冪是正數(shù)。
正數(shù)的任何次冪都是正數(shù),0的任何次冪都是0。把一個大于10的數(shù)表示成a*10的n次方的形式,使用的就是科學計數(shù)法。
從一個數(shù)的左邊第一個非0數(shù)字起,到末位數(shù)字止,所有數(shù)字都是這個數(shù)的有效數(shù)字(significant digit)。第二章 一元一次方程2.1 從算式到方程方程是含有未知數(shù)的等式。
方程都只含有一個未知數(shù)(元)x,未知數(shù)x的指數(shù)都是1(次),這樣的方程叫做一元一次方程(linear equation with one unknown)。解方程就是求出使方程中等號左右兩邊相等的未知數(shù)的值,這個值就是方程的解(solution)。
等式的性質(zhì):1.等式兩邊加(或減)同一個數(shù)(或式子),結(jié)果仍相等。2.等式兩邊乘同一個數(shù),或除以同一個不為0的數(shù),結(jié)果仍相等。
2.2 從古老的代數(shù)書說起——一元一次方程的討論(1)把等式一邊的某項變號后移到另一邊,叫做移項。第三章 圖形認識初步3.1 多姿多彩的圖形幾何體也簡稱體(solid)。
包圍著體的是面(surface)。3.2 直線、射線、線段線段公理:兩點的所有連線中,線段做短(兩點之間,線段最短)。
連接兩點間的線段的長度,叫做這兩點的距離。3.3 角的度量1度=60分 1分=60秒 1周角=360度 1平角=180度3.4 角的比較與運算如果兩個角的和等于90度(直角),就說這兩個叫互為余角(compiementary angle),即其中每一個角是另一個角的余角。
如果兩個角的和等于180度(平角),就說這兩個叫互為補角(supplementary angle),即其中每一個角是另一個角的補角。等角(同角)的補角相等。
等角(同角)的余角相等。第四章 數(shù)據(jù)的收集與整理收集、整理、描述和分析數(shù)據(jù)是數(shù)據(jù)處理的基本過程。
初一上冊數(shù)學知識點 第一章 有理數(shù) 1正數(shù)、負數(shù)、有理數(shù)、相反數(shù)、科學記數(shù)法、近似數(shù) 2數(shù)軸:用數(shù)軸來表示數(shù) 3絕對值:正數(shù)的絕對值是它本身;負數(shù)的絕對值是它的相反數(shù);零的絕對值是零 4正負數(shù)的大小比較:正數(shù)大于零,零大于負數(shù),正數(shù)大于負數(shù),絕對值大的負數(shù)值反而小 。
5有理數(shù)的加法法則: 同號兩數(shù)相加,取相同的符號,并把絕對值相加; 絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去減小的絕對值; 互為相反數(shù)的兩數(shù)相加為零; 一個數(shù)加上零,仍得這個數(shù)。 6有理數(shù)的減法(把減法轉(zhuǎn)換為加法) 減去一個數(shù),等于加上這個數(shù)的相反數(shù)。
7有理數(shù)乘法法則 兩數(shù)相乘,同號得正,異號得負,并把絕對值相乘; 任何數(shù)同零相乘,都得零。 乘積是一的兩個數(shù)互為倒數(shù)。
8有理數(shù)的除法(轉(zhuǎn)換為乘法) 除以一個不為零的數(shù),等于乘這個數(shù)的倒數(shù)。 9有理數(shù)的乘方 正數(shù)的任何次冪都是正數(shù); 零的任何次冪都是負數(shù); 負數(shù)的奇次冪是負數(shù),負數(shù)的偶次冪是正數(shù)。
10混合運算順序 (1) 先乘方,再乘除,最后加減; (2) 同級運算,從左到右進行; (3) 如果有括號,先做括號內(nèi)的運算,按照小括號、中括號、大括號依次進行。 第二章 整式的加減 1 整式:單項式和多項式的統(tǒng)稱; 2整式的加減 (1) 合并同類項 (2) 去括號 第三章 一元一次方程 1 一元一次方程的認識 2 等式的性質(zhì) 等式兩邊加上或減去同一個數(shù)或者式子,結(jié)果仍然相等; 等式兩邊乘同一個數(shù),或除以同一個不為零的數(shù),結(jié)果仍相等。
3 解一元一次方程 一般步驟:去分母、去括號、移項、合并同類項、系數(shù)化為一 第四章 圖形認識初步 1 幾何圖形:平面圖和立體圖 2 點、線、面、體 3 直線、射線、線段 兩點確定一條直線; 兩點之間,線段最短 4 角 角的度量度數(shù) 角的比較和運算 補角和余角:等角的補角和余角相等。
初一數(shù)學(上)應(yīng)知應(yīng)會的知識點 代數(shù)初步知識 1. 代數(shù)式:用運算符號“+ - * ÷ …… ”連接數(shù)及表示數(shù)的字母的式子稱為代數(shù)式.注意:用字母表示數(shù)有一定的限制,首先字母所取得數(shù)應(yīng)保證它所在的式子有意義,其次字母所取得數(shù)還應(yīng)使實際生活或生產(chǎn)有意義;單獨一個數(shù)或一個字母也是代數(shù)式. 2.列代數(shù)式的幾個注意事項: (1)數(shù)與字母相乘,或字母與字母相乘通常使用“· ” 乘,或省略不寫; (2)數(shù)與數(shù)相乘,仍應(yīng)使用“*”乘,不用“· ”乘,也不能省略乘號; (3)數(shù)與字母相乘時,一般在結(jié)果中把數(shù)寫在字母前面,如a*5應(yīng)寫成5a; (4)帶分數(shù)與字母相乘時,要把帶分數(shù)改成假分數(shù)形式,如a* 應(yīng)寫成 a; (5)在代數(shù)式中出現(xiàn)除法運算時,一般用分數(shù)線將被除式和除式聯(lián)系,如3÷a寫成 的形式; (6)a與b的差寫作a-b,要注意字母順序;若只說兩數(shù)的差,當分別設(shè)兩數(shù)為a、b時,則應(yīng)分類,寫做a-b和b-a . 3.幾個重要的代數(shù)式:(m、n表示整數(shù)) (1)a與b的平方差是: a2-b2 ; a與b差的平方是:(a-b)2 ; (2)若a、b、c是正整數(shù),則兩位整數(shù)是: 10a+b ,則三位整數(shù)是:100a+10b+c; (3)若m、n是整數(shù),則被5除商m余n的數(shù)是: 5m+n ;偶數(shù)是:2n ,奇數(shù)是:2n+1;三個連續(xù)整數(shù)是: n-1、n、n+1 ; (4)若b>0,則正數(shù)是:a2+b ,負數(shù)是: -a2-b ,非負數(shù)是: a2 ,非正數(shù)是:-a2 . 有理數(shù) 1.有理數(shù): (1)凡能寫成 形式的數(shù),都是有理數(shù).正整數(shù)、0、負整數(shù)統(tǒng)稱整數(shù);正分數(shù)、負分數(shù)統(tǒng)稱分數(shù);整數(shù)和分數(shù)統(tǒng)稱有理數(shù).注意:0即不是正數(shù),也不是負數(shù);-a不一定是負數(shù),+a也不一定是正數(shù);p不是有理數(shù); (2)有理數(shù)的分類: ① ② (3)注意:有理數(shù)中,1、0、-1是三個特殊的數(shù),它們有自己的特性;這三個數(shù)把數(shù)軸上的數(shù)分成四個區(qū)域,這四個區(qū)域的數(shù)也有自己的特性; (4)自然數(shù)? 0和正整數(shù);a>0 ? a是正數(shù);a a≥0 ? a是正數(shù)或0 ? a是非負數(shù);a≤ 0 ? a是負數(shù)或0 ? a是非正數(shù). 2.數(shù)軸:數(shù)軸是規(guī)定了原點、正方向、單位長度的一條直線. 3.相反數(shù): (1)只有符號不同的兩個數(shù),我們說其中一個是另一個的相反數(shù);0的相反數(shù)還是0; (2)注意: a-b+c的相反數(shù)是-a+b-c;a-b的相反數(shù)是b-a;a+b的相反數(shù)是-a-b; (3)相反數(shù)的和為0 ? a+b=0 ? a、b互為相反數(shù). 4.絕對值: (1)正數(shù)的絕對值是其本身,0的絕對值是0,負數(shù)的絕對值是它的相反數(shù);注意:絕對值的意義是數(shù)軸上表示某數(shù)的點離開原點的距離; (2) 絕對值可表示為: 或 ;絕對值的問題經(jīng)常分類討論; (3) ; ; (4) |a|是重要的非負數(shù),即|a|≥0;注意:|a|·|b|=|a·b|, . 5.有理數(shù)比大小:(1)正數(shù)的絕對值越大,這個數(shù)越大;(2)正數(shù)永遠比0大,負數(shù)永遠比0小;(3)正數(shù)大于一切負數(shù);(4)兩個負數(shù)比大小,絕對值大的反而?。唬?)數(shù)軸上的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大;(6)大數(shù)-小數(shù) > 0,小數(shù)-大數(shù) 6.互為倒數(shù):乘積為1的兩個數(shù)互為倒數(shù);注意:0沒有倒數(shù);若 a≠0,那么 的倒數(shù)是 ;倒數(shù)是本身的數(shù)是±1;若ab=1? a、b互為倒數(shù);若ab=-1? a、b互為負倒數(shù). 7. 有理數(shù)加法法則: (1)同號兩數(shù)相加,取相同的符號,并把絕對值相加; (2)異號兩數(shù)相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值; (3)一個數(shù)與0相加,仍得這個數(shù). 8.有理數(shù)加法的運算律: (1)加法的交換律:a+b=b+a ;(2)加法的結(jié)合律:(a+b)+c=a+(b+c). 9.有理數(shù)減法法則:減去一個數(shù),等于加上這個數(shù)的相反數(shù);即a-b=a+(-b). 10 有理數(shù)乘法法則: (1)兩數(shù)相乘,同號為正,異號為負,并把絕對值相乘; (2)任何數(shù)同零相乘都得零; (3)幾個數(shù)相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數(shù)決定. 11 有理數(shù)乘法的運算律: (1)乘法的交換律:ab=ba;(2)乘法的結(jié)合律:(ab)c=a(bc); (3)乘法的分配律:a(b+c)=ab+ac . 12.有理數(shù)除法法則:除以一個數(shù)等于乘以這個數(shù)的倒數(shù);注意:零不能做除數(shù), . 13.有理數(shù)乘方的法則: (1)正數(shù)的任何次冪都是正數(shù); (2)負數(shù)的奇次冪是負數(shù);負數(shù)的偶次冪是正數(shù);注意:當n為正奇數(shù)時: (-a)n=-an或(a -b)n=-(b-a)n , 當n為正偶數(shù)時: (-a)n =an 或 (a-b)n=(b-a)n . 14.乘方的定義: (1)求相同因式積的運算,叫做乘方; (2)乘方中,相同的因式叫做底數(shù),相同因式的個數(shù)叫做指數(shù),乘方的結(jié)果叫做冪; (3)a2是重要的非負數(shù),即a2≥0;若a2+|b|=0 ? a=0,b=0; (4)據(jù)規(guī)律 底數(shù)的小數(shù)點移動一位,平方數(shù)的小數(shù)點移動二位. 15.科學記數(shù)法:把一個大于10的數(shù)記成a*10n的形式,其中a是整數(shù)數(shù)位只有一位的數(shù),這種記數(shù)法叫科學記數(shù)法. 16.近似數(shù)的精確位:一個近似數(shù),四舍五入到那一位,就說這個近似數(shù)的精確到那一位. 17.有效數(shù)字:從左邊第一個不為零的數(shù)字起,到精確的位數(shù)止,所有數(shù)字,都叫這個近似數(shù)的有效數(shù)字. 18.混合運算法則:先乘方,后乘除,最后加減;注意:怎樣算簡單,怎樣算準確,是數(shù)學計算的最重要的原則. 19.特殊值法:是用符合題目要求的數(shù)代入,并驗證題設(shè)成立而進行猜想的一種方法,但不能用于證明. 整式的加減 1.單項式:在代數(shù)式中,若只含有乘法(包括。
七年級數(shù)學(上)知識點 人教版七年級數(shù)學上冊主要包含了有理數(shù)、整式的加減、一元一次方程、圖形的認識初步四個章節(jié)的內(nèi)容. 第一章 有理數(shù) 一、知識框架 二.知識概念 1.有理數(shù): (1)凡能寫成形式的數(shù),都是有理數(shù).正整數(shù)、0、負整數(shù)統(tǒng)稱整數(shù);正分數(shù)、負分數(shù)統(tǒng)稱分數(shù);整數(shù)和分數(shù)統(tǒng)稱有理數(shù).注意:0即不是正數(shù),也不是負數(shù);-a不一定是負數(shù),+a也不一定是正數(shù);p不是有理數(shù); (2)有理數(shù)的分類: ① ② 2.數(shù)軸:數(shù)軸是規(guī)定了原點、正方向、單位長度的一條直線. 3.相反數(shù): (1)只有符號不同的兩個數(shù),我們說其中一個是另一個的相反數(shù);0的相反數(shù)還是0; (2)相反數(shù)的和為0 ? a+b=0 ? a、b互為相反數(shù). 4.絕對值: (1)正數(shù)的絕對值是其本身,0的絕對值是0,負數(shù)的絕對值是它的相反數(shù);注意:絕對值的意義是數(shù)軸上表示某數(shù)的點離開原點的距離; (2) 絕對值可表示為:或 ;絕對值的問題經(jīng)常分類討論; 5.有理數(shù)比大?。海?)正數(shù)的絕對值越大,這個數(shù)越大;(2)正數(shù)永遠比0大,負數(shù)永遠比0小;(3)正數(shù)大于一切負數(shù);(4)兩個負數(shù)比大小,絕對值大的反而?。唬?)數(shù)軸上的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大;(6)大數(shù)-小數(shù) > 0,小數(shù)-大數(shù) ”“≤ ”“≥”表示大小關(guān)系的式子叫做不等式。
2.不等式的解:使不等式成立的未知數(shù)的值,叫做不等式的解。 3.不等式的解集:一個含有未知數(shù)的不等式的所有解,組成這個不等式的解集。
4.一元一次不等式:不等式的左、右兩邊都是整式,只有一個未知數(shù),并且未知數(shù)的最高次數(shù)是1,像這樣的不等式,叫做一元一次不等式。 5.一元一次不等式組:一般地,關(guān)于同一未知數(shù)的幾個一元一次不等式合在一起,就組成6.了一個一元一次不等式組。
7.定理與性質(zhì) 不等式的性質(zhì): 不等式的基本性質(zhì)1:不等式的兩邊都加上(或減去)同一個數(shù)(或式子),不等號的方向不變。 不等式的基本性質(zhì)2:不等式的兩邊都乘以(或除以)同一個正數(shù),不等號的方向不變。
不等式的基本性質(zhì)3:不等式的兩邊都乘以(或除以)同一個負數(shù),不等號的方向改變。 本章內(nèi)容要求學生經(jīng)歷建立一元一次不等式(組)這樣的數(shù)學模型并應(yīng)用它解決實際問題的過程,體會不等式(組)的特點和作用,掌握運用它們解決問題的一般方法,提高分析問題、解決問題的能力,增強創(chuàng)新精神和應(yīng)用數(shù)學的意識。
第十章 數(shù)據(jù)的收集、整理與描述 一.知識框架 全面調(diào)查 抽樣調(diào)查 收集數(shù)據(jù) 描述數(shù)據(jù) 整理數(shù)據(jù) 分析數(shù)據(jù) 得出結(jié)論 二.知識概念 1.全面調(diào)查:考察全體對象的調(diào)查方式叫做全面調(diào)查。 2.抽樣調(diào)查:調(diào)查部分數(shù)據(jù),根據(jù)部分來估計總體的調(diào)查方式稱為抽樣調(diào)查。
3.總體:要考察的全體對象稱為總體。 4.個體:組成總體的每一個考察對象稱為個體。
5.樣本:被抽取的所有個體組成一個樣本。 6.樣本容量:樣本中個體的數(shù)目稱為樣本容量。
7.頻數(shù):一般地,我們稱落在不同小組中的數(shù)據(jù)個數(shù)為該組的頻數(shù)。 8.頻率:頻數(shù)與數(shù)據(jù)總數(shù)的比為頻率。
9.組數(shù)和組距:在統(tǒng)計數(shù)據(jù)時,把數(shù)據(jù)按照一定的范圍分成若干各組,分成組的個數(shù)稱為組數(shù),每一組兩個端點的差叫做組距。 本章要求通過實際參與收集、整理、描述和分析數(shù)據(jù)的活動,經(jīng)歷統(tǒng)計的一般過程,感受統(tǒng)計在生活和生產(chǎn)中的作用,增強學習統(tǒng)計的興趣,初步建立統(tǒng)計的觀念,培養(yǎng)重視調(diào)查研究的良好習慣和科學態(tài)度。
1 過兩點有且只有一條直線2 兩點之間線段最短 3 同角或等角的補角相等 4 同角或等角的余角相等 5 過一點有且只有一條直線和已知直線垂直6 直線外一點與直線上各點連接的所有線段中,垂線段最短7 平行公理經(jīng)過直線外一點,有且只有一條直線與這條直線平行8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行9 同位角相等,兩直線平行10 內(nèi)錯角相等,兩直線平行11 同旁內(nèi)角互補,兩直線平行12兩直線平行,同位角相等 13 兩直線平行,內(nèi)錯角相等 14 兩直線平行,同旁內(nèi)角互補15 定理三角形兩邊的和大于第三邊16 推論三角形兩邊的差小于第三邊17 三角形內(nèi)角和定理三角形三個內(nèi)角的和等于180°18 推論1 直角三角形的兩個銳角互余19 推論2 三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和20 推論3 三角形的一個外角大于任何一個和它不相鄰的內(nèi)角21 全等三角形的對應(yīng)邊、對應(yīng)角相等22邊角邊公理(SAS) 有兩邊和它們的夾角對應(yīng)相等的兩個三角形全等23 角邊角公理( ASA)有兩角和它們的夾邊對應(yīng)相等的兩個三角形全等24 推論(AAS) 有兩角和其中一角的對邊對應(yīng)相等的兩個三角形全等25 邊邊邊公理(SSS) 有三邊對應(yīng)相等的兩個三角形全等26 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應(yīng)相等的兩個直角三角形全等27 定理1 在角的平分線上的點到這個角的兩邊的距離相等28 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上29 角的平分線是到角的兩邊距離相等的所有點的集合30 等腰三角形的性質(zhì)定理等腰三角形的兩個底角相等(即等邊對等角)31 推論1 等腰三角形頂角的平分線平分底邊并且垂直于底邊32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合33 推論3 等邊三角形的各角都相等,并且每一個角都等于60°34 等腰三角形的判定定理如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)35 推論1 三個角都相等的三角形是等邊三角形36 推論2 有一個角等于60°的等腰三角形是等邊三角形37 在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半38 直角三角形斜邊上的中線等于斜邊上的一半39 定理線段垂直平分線上的點和這條線段兩個端點的距離相等人教版新目標初二下英語同步輔導(dǎo)(一)初中二年級下un。
初中二年級下Un。40 逆定理和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上41 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合42 定理1 關(guān)于某條直線對稱的兩個圖形是全等形43 定理2 如果兩個圖形關(guān)于某直線對稱,那么對稱軸是對應(yīng)點連線的垂直平分線44定理3 兩個圖形關(guān)于某直線對稱,如果它們的對應(yīng)線段或延長線相交,那么交點在對稱軸上45逆定理如果兩個圖形的對應(yīng)點連線被同一條直線垂直平分,那么這兩個圖形關(guān)于這條直線對稱46勾股定理直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a^2+b^2=c^2 47勾股定理的逆定理如果三角形的三邊長a、b、c有關(guān)系a^2+b^2=c^2 ,那么這個三角形是直角三角形48定理四邊形的內(nèi)角和等于360°49四邊形的外角和等于360°50多邊形內(nèi)角和定理n邊形的內(nèi)角的和等于(n-2)*180°51推論任意多邊的外角和等于360°52平行四邊形性質(zhì)定理1 平行四邊形的對角相等53平行四邊形性質(zhì)定理2 平行四邊形的對邊相等54推論夾在兩條平行線間的平行線段相等55平行四邊形性質(zhì)定理3 平行四邊形的對角線互相平分56平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形57平行四邊形判定定理2 兩組對邊分別相等的四邊形是平行四邊形58平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形59平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形60矩形性質(zhì)定理1 矩形的四個角都是直角學好初二數(shù)學的方法一、該記的記,該背的背,不要以為理解了就行數(shù)學的定義、法則、公式、定理等一定要記熟,有些最好能背誦,朗朗上口。
比如大家熟悉的“整式乘法三個公式”,我看在座的有的背得出,有的就背不出。在這里,我向背不出的同學敲一敲警鐘,如果背不出這三個公式,將會對今后的學習造成很大的麻煩,因為今后的學習將會大量地用到這三個公式,特別是初二即將學的因式分解,其中相當重要的三個因式分解公式就是由這三個乘法公式推出來的,二者是相反方向的變形。
對數(shù)學的定義、法則、公式、定理等,理解了的要記住,暫時不理解的也要記住,在記憶的基礎(chǔ)上、在應(yīng)用它們解決問題時再加深理解。打一個比方,數(shù)學的定義、法則、公式、定理就像木匠手中的斧頭、鋸子、墨斗、刨子等,沒有這些工具,木匠是打不出家具的;有了這些工具,再加上嫻熟的手藝和智慧,就可以打出各式各樣精美的家具。
同樣,記不住數(shù)學的定義、法則、公式、定理就很難解數(shù)學題。而記住了這些再配以一定的方法、技巧和敏捷的思維,就能在解數(shù)學題,甚至是解數(shù)學難題中得心應(yīng)手。
二、幾個重要的數(shù)學思想1、“方程”的思想數(shù)學是研究事物的空間形式和數(shù)量關(guān)系的,初中最重要的數(shù)量關(guān)系是等量關(guān)系,其次是不等量關(guān)系。最常見的等量關(guān)系就是“方程”。
比。
?對于剛上初一的孩子來說,數(shù)學因為比小學難度增加了很大一截,所以學習起來有些孩子會感覺到吃力。
那么怎樣幫助孩子做好數(shù)學總結(jié),幫助孩子提高數(shù)學題目的解題能力,讓孩子能夠取得數(shù)學考試的高分呢?模型解題法是一套不錯的理科學習提高的教學軟件,是幫助孩子的理想選擇。 ?“通用模型解題”是一種科學、實用、高效的學習方法,它抓住了學科的本質(zhì)規(guī)律,通過對中學各學科題型的深度分析,歸納、總結(jié)提煉出若干個簡單的解題模型,通過模型的單用、套用和連用,實現(xiàn)了通過有限的模型解決千變?nèi)f化的試題,讓學生真正掌握解題的科學、簡便的路徑,正確、快速地解題。
《通用模型解題》包括名師講解光盤、鞏固提高學習手冊和模型記憶卡片??垂獗P,聽名師講解模型解題的技巧方法;看模型記憶卡片,輕松記憶學科“模型”;學習手冊,熟練運用各種模型來解題,體會模型解題的神奇。
舉一反三,融會貫通。“通用模型解題”讓學生學會用“模型”來準確、簡明、快速解決各種試題的思維方式,大幅提升學習成績! 模型解題法就是一種把復(fù)雜的問題簡單化的一套科學的解題方法。
用模型解題只需要三個步驟: 第一步,要找出對應(yīng)的模型。第二步,找出該題的特定條件。
第三步,列式、操作、運算。模型解題的操作過程就這么簡單!學生掌握起來也是這么簡單! ?。
初三數(shù)學知識點第一章 二次根式 1 二次根式:形如 ( )的式子為二次根式; 性質(zhì): ( )是一個非負數(shù); ; 。
2 二次根式的乘除: ; 。 3 二次根式的加減:二次根式加減時,先將二次根式華為最簡二次根式,再將被開方數(shù)相同的二次根式進行合并。
4 海倫-秦九韶公式: ,S是三角形的面積,p為 。第二章 一元二次方程1 一元二次方程:等號兩邊都是整式,且只有一個未知數(shù),未知數(shù)的最高次是2的方程。
2 一元二次方程的解法 配方法:將方程的一邊配成完全平方式,然后兩邊開方; 公式法: 因式分解法:左邊是兩個因式的乘積,右邊為零。3 一元二次方程在實際問題中的應(yīng)用4 韋達定理:設(shè) 是方程 的兩個根,那么有第三章 旋轉(zhuǎn) 1 圖形的旋轉(zhuǎn)旋轉(zhuǎn):一個圖形繞某一點轉(zhuǎn)動一個角度的圖形變換 性質(zhì):對應(yīng)點到旋轉(zhuǎn)中心的距離相等; 對應(yīng)點與旋轉(zhuǎn)中心所連的線段的夾角等于旋轉(zhuǎn)角 旋轉(zhuǎn)前后的圖形全等。
2 中心對稱:一個圖形繞一個點旋轉(zhuǎn)180度,和另一個圖形重合,則兩個圖形關(guān)于這個點中心對稱; 中心對稱圖形:一個圖形繞某一點旋轉(zhuǎn)180度后得到的圖形能夠和原來的圖形重合,則說這個圖形是中心對稱圖形; 3 關(guān)于原點對稱的點的坐標 第四章 圓 1 圓、圓心、半徑、直徑、圓弧、弦、半圓的定義 2 垂直于弦的直徑 圓是軸對稱圖形,任何一條直徑所在的直線都是它的對稱軸; 垂直于弦的直徑平分弦,并且平方弦所對的兩條??; 平分弦的直徑垂直弦,并且平分弦所對的兩條弧。 3 弧、弦、圓心角 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦也相等。
4 圓周角 在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半; 半圓(或直徑)所對的圓周角是直角,90度的圓周角所對的弦是直徑。 5 點和圓的位置關(guān)系 點在圓外 點在圓上 d=r 點在圓內(nèi) d<r 定理:不在同一條直線上的三個點確定一個圓。
三角形的外接圓:經(jīng)過三角形的三個頂點的圓,外接圓的圓心是三角形的三條邊的垂直平分線的交點,叫做三角形的外心。 6直線和圓的位置關(guān)系 相交 dr 切線的性質(zhì)定理:圓的切線垂直于過切點的半徑; 切線的判定定理:經(jīng)過圓的外端并且垂直于這條半徑的直線是圓的切線; 切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等,這一點和圓心的連線平分兩條切線的夾角。
三角形的內(nèi)切圓:和三角形各邊都相切的圓為它的內(nèi)切圓,圓心是三角形的三條角平分線的交點,為三角形的內(nèi)心。 7 圓和圓的位置關(guān)系 外離 d>R+r 外切 d=R+r 相交 R-r<d<R+r 內(nèi)切 d=R-r 內(nèi)含 d<R-r 8 正多邊形和圓 正多邊形的中心:外接圓的圓心 正多邊形的半徑:外接圓的半徑 正多邊形的中心角:沒邊所對的圓心角 正多邊形的邊心距:中心到一邊的距離 9 弧長和扇形面積 弧長 扇形面積: 10 圓錐的側(cè)面積和全面積 側(cè)面積: 全面積11 (附加)相交弦定理、切割線定理第五章 概率初步 1 概率意義:在大量重復(fù)試驗中,事件A發(fā)生的頻率 穩(wěn)定在某個常數(shù)p附近,則常數(shù)p叫做事件A的概率。
2 用列舉法求概率 一般的,在一次試驗中,有n中可能的結(jié)果,并且它們發(fā)生的概率相等,事件A包含其中的m中結(jié)果,那么事件A發(fā)生的概率就是p(A)= 3 用頻率去估計概率下冊第六章 二次函數(shù) 1 二次函數(shù) = a>0,開口向上;a<0,開口向下; 對稱軸: ; 頂點坐標: ; 圖像的平移可以參照頂點的平移。2 用函數(shù)觀點看一元二次方程3 二次函數(shù)與實際問題第七章 相似1 圖形的相似 相似多邊形的對應(yīng)邊的比值相等,對應(yīng)角相等; 兩個多邊形的對應(yīng)角相等,對應(yīng)邊的比值也相等,那么這兩個多邊形相似; 相似比:相似多邊形對應(yīng)邊的比值。
2 相似三角形判定:平行于三角形一邊的直線和其它兩邊相交,所構(gòu)成的三角形和原三角形相似; 如果兩個三角形的三組對應(yīng)邊的比相等,那么這兩個三角形相似; 如果兩個三角形的兩組對應(yīng)邊的比相等,并且相應(yīng)的夾角相等,那么兩個三角形相似; 如果一個三角形的兩個角與另一個三角形的兩個角對應(yīng)相等,那么兩個三角形相似。3 相似三角形的周長和面積相似三角形(多邊形)的周長的比等于相似比;相似三角形(多邊形)的面積的比等于相似比的平方。
4 位似位似圖形:兩個多邊形相似,而且對應(yīng)頂點的連線相交于一點,對應(yīng)邊互相平行,這樣的兩個圖形叫位似圖形,相交的點叫位似中心。第八章 銳角三角函數(shù)1 銳角三角函數(shù):正弦、余弦、正切;2 解直角三角形第九章 投影和視圖 1 投影:平行投影、中心投影、正投影2 三視圖:俯視圖、主視圖、左視圖。
3 三視圖的畫法。
聲明:本網(wǎng)站尊重并保護知識產(chǎn)權(quán),根據(jù)《信息網(wǎng)絡(luò)傳播權(quán)保護條例》,如果我們轉(zhuǎn)載的作品侵犯了您的權(quán)利,請在一個月內(nèi)通知我們,我們會及時刪除。
蜀ICP備2020033479號-4 Copyright ? 2016 學習鳥. 頁面生成時間:1.728秒